

PERSIMMON HOMES SOUTH COAST

LAND AT CHICKERELL, WEYMOUTH

FLOOD RISK ASSESSMENT

PFA Consulting

Stratton Park House Wanborough Road Swindon SN3 4HG

Telephone: Facsimile: E-mail:

01793 828000 01793 835500 admin@pfaplc.com

engineering the future

DOCUMENT CONTROL

Job No.	P482		
	Name	Date	Initials
Prepared by	A Dennis	12.02.10	GTBD
Checked by	C Isherwood	12.02.10	60

Issue	Date	Comments	Approved
2	26.03.10	-	60
			C Isherwood

Opinions and information provided in this document have been provided using due care and diligence. It should be noted and is expressly stated that no independent verification of any information supplied to PFA Consulting has been made.

Warning: This document may contain coloured images which may not print satisfactorily in black and white. It may also contain images originally created at a size greater than A4 which may not print satisfactorily on small printers. If copying is authorised but difficulty is incurred in reproducing a paper copy of this document, or a scaled copy is required, please contact PFA Consulting. Authorisation for reproducing plans based upon Ordnance Survey information cannot be given.

This document has been prepared for the exclusive use of the client in connection with the project and unless otherwise agreed in writing by PFA Consulting, no other party may copy, reproduce, make use of or rely upon the contents of this report other than for the purposes for which it was originally prepared and provided.

CONTENTS

PAGE NO.

1.	INTRODUCTION	1
2.	THE SCOPE OF THE ASSESSMENT	2
3.	FLOOD RISK ASSESSMENT	5
4.	CONCLUSIONS	12

APPENDICES

Appendix 1	Drawing Number P482/12 – Site Location Plan
Appendix 2	SFRA Flow Chart
Appendix 3	Environment Agency Flood Map
Appendix 4	FRA Guidance Note 1
Appendix 5	Pegasus Urban Design – Site Design Concept
Appendix 6	Weymouth and Portland Borough Council Second Newsletter
Appendix 7	IoH 124 Greenfield Runoff Calculations

Appendix 8 Surface Water Drainage WinDes Calculations

1. INTRODUCTION

- 1.1. This Flood Risk Assessment (FRA) has been prepared on behalf of Persimmon Homes in connection with the promotion of land for residential development at land at Chickerell, near Weymouth.
- 1.2. The location of the proposed site is situated in Chickerell, to the north west of Weymouth as shown on drawing P482/12 contained at Appendix 1.
- 1.3. This report will consider both the risk from pluvial and fluvial flooding and also the impact on the surrounding areas from the discharge of surface water from the development.
- 1.4. The purpose of this Flood Risk Assessment is to provide sufficient flood risk information in support of the proposals to demonstrate that the development could proceed without creating an unacceptable flood risk.

2. THE SCOPE OF THE ASSESSMENT

- 2.1. Planning Policy Statement 25: Development and Flood Risk (PPS25), published in December 2006, sets out the Government's policy on development and flood risk. It highlights the key role of the planning system in managing flood risk and planning's contribution to mitigating and adapting to climate change.
- 2.2. PPS25 requires that a sequential risk-based approach should be used to determine the suitability of land for development, and that flood risk assessments should be carried out to the appropriate degree at all levels of the planning process. A Regional Flood Risk Appraisal (RFRA) should inform the Regional Spatial Strategy (RSS) taking account of Strategic Flood Risk Assessments (SFRAs) where available. A SFRA should be carried out by the Local Planning Authority (LPA) to inform the preparation of its Local Development Documents (LDDs).
- 2.3. A SFRA provides the basis for the Sequential Test which should be applied at all stages of the planning process to steer new development to areas at the lowest probability of flooding. Weymouth and Portland Borough Council in its role as Local Planning Authority has produced a SFRA that includes the development site.
- 2.4. The SFRA advises that when a site lies within an area of potential flood risk, the Decision Flow Chart based on PPS25 should be used to determine the suitability of the site for development, having regard to its Vulnerability Classification. The Flood Risk Vulnerability Classification, contained in section 7.1 of the SFRA, is a reproduction of Table D2 in PPS25, which is based on the Environment Agency's Flood Zones. A copy of the SFRA Decision Flow Chart is reproduced in Appendix 2 and the Environment Agency's Flood Map is reproduced in Appendix 3.
- 2.5. The Environment Agency's Flood Zones provide an indication of the probability of flooding and the predicted extent of the natural floodplain and extreme flood events. From an inspection of the Environment Agency's Flood Map the development site lies within Flood Zone 1. A copy of the map is reproduced at Appendix 2.

- 2.6. PPS25 defines Zone 1 as 'low probability' of flooding with an annual chance of flooding of < 0.1% (Greater than 1 in 1000). It also advises that all forms of development are suitable in this area.</p>
- 2.7. The need for an appropriate assessment of flood risk is set out in paragraphs 8, 10-13, and 22 of PPS25. Guidance on the minimum requirements for Flood Risk Assessments is contained in Annex E of PPS25. Further guidance is given in Development and Flood Risk Planning Policy Statement 25: Practice Guide, published by the Department for Communities and Local Government in June 2008.
- 2.8. To assist local planning authorities in making decisions on planning applications, the Environment Agency has produced Standing Advice. The Standing Advice contains a consultation matrix which sets out when the LPA needs to consult the Environment Agency, and provides guidance on what that consultation could contain for different combinations of location and development type. The proposed development at Chickerell falls into the category 'Highly Vulnerable Development Over 1 Hectare'. For this category of development, falling within Flood Zone 1, the Consultation Matrix indicates that the LPA should consult with the Environment Agency, and that the planning application should be accompanied by a Flood Risk Assessment.
- 2.9. The Standing Advice also contains Development advice for Applicants and Agents, together with three Technical Guidance Notes on Flood Risk Assessment which provide information on the range of factors that need to be considered when assessing flood risk for various development types, at different scales and locations. The relevant Technical Guidance Note for the proposed development is FRA Guidance Note 1: Development Greater Than 1 Hectare (ha) in Flood Zone 1 (and Critical Drainage areas less than 1ha). A copy of FRA Guidance Note 1 is reproduced at Appendix 4.
- 2.10. Annex E of PPS25 advises that any assessment of flood risk should be proportionate to the risk and appropriate to the scale, nature, and location of the development. Guidance on the objectives and scope of site-specific Flood Risk Assessments is provided in paragraphs 2.70-2.76 and Figure 3.5 of the Practice Guide, as well as paragraphs 9.2 of the SFRA.

2.11. The scope of this Flood Risk Assessment is therefore to provide sufficient information to satisfy the relevant requirements of PPS25 Annex E, FRA Guidance Note 3 and the SFRA.

3. FLOOD RISK ASSESSMENT

Site Location

- 3.1. The Site Location Plan included at Appendix 1 is based on Ordnance Survey mapping, and shows geographical features and watercourses in the vicinity of the development site.
- 3.2. The site is situated immediately to the east of Chickerell, with Coldharbour Lane to the north and the B3157 to the south. A large electricity substation is situated to the east of the site.
- 3.3. The Southill Watercourse flows from west to east across the centre of the site passing under the substation in a culvert before returning to an open channel as it approaches the west side of Southill. A pond and ditch network connected to Bennetts Water Park is located to the south of the site.

Development Description and Planning Context

- 3.4. Weymouth and Portland Council's Local Development Documents (LDDs) include saved policies from the accepted Weymouth and Portland Local Plan 2005.
- 3.5. Policy N1 in the adopted Weymouth and Portland Local Plan 2005 deals with the protection of the quantity and quality of natural waters following development. Policy N2 states that surface water drainage should not cause increased risk to surrounding areas and should be where practical done in a sustainable manner. Policy N3 highlights the preference for development of sites with no flood risk in accordance with a sequential approach.
- 3.6. The site is presently open farm land used for grazing. It is proposed to have a mixed development including approximately 9.4Ha of residential housing a primary school, community hub and public open space.
- 3.7. A plan showing the outline design concept is shown on Pegasus Urban Design plan which is reproduced at Appendix 5.
- 3.8. Flood risk vulnerability classifications are provided in Annex D Table D.2 of

PPS25. With reference to Table D.2, the proposed development at Chickerell is classified as 'More Vulnerable'. The site lies within Flood Zone 1. PPS25 defines Flood Zone 1 as a 'Low Probability' zone assessed as having an annual probability of less than 1 in 1000 (0.1%) of river flooding. PPS25 advises that all uses of land are appropriate in this zone.

Site Levels

3.9. From the OS contours it is clear that the site falls at a steady gradient from a level of approximately 48m AOD in the north to about 13m AOD at the small unnamed watercourse crossing the centre of the site. The ground then rises again to the south of the ditch to approximately 25m before falling to 10m AOD at the southern edge of the site.

Existing Surface Water Drainage Arrangements

- 3.10. The site currently has no formal drainage in place with surface water flowing overland to either the Southill Watercourse at the centre of the site, the ditch network linked to Bennetts Water Park in the South, or directly to the surrounding land depending on the topography.
- 3.11. The Southill Watercourse is subject to an ongoing flood study undertaken by Weymouth and Portland Borough Council following the 13 December 2008 flood event. That event saw localised flooding in the Southill residential area and precinct. A copy of the second newsletter issued by Weymouth and Portland Borough Council appears as **Appendix 6**.

Definition of Flood Hazard

3.12. The Environment Agency's Flood Map indicates that the floodplain associated with the rivers and ditches in the area for flood events having an annual probability of less than 1 in 1000 (> 0.1%).

Climate Change

3.13. Annex B of PPS25 provides details on the allowances to be made for climate change effects when assessing flood risk. Table B.2 provides recommended national precautionary sensitivity ranges for peak rainfall intensities. With reference to Table B.2, the appropriate allowance for climate change when considering peak rainfall intensities for surface water drainage is 30%.

DRAINAGE STRATERGY

Sustainable Drainage Systems (SUDS)

- 3.14. PPS25 encourages the use of SUDS in new developments. Guidance on the use of SUDS is contained in Annex F of PPS25, and in the Practice Guide Companion.
- 3.15. Paragraph F6 of PPS25 Annex F states that surface water arising from a developed site should, as far as practicable, be managed in a sustainable manner to mimic the surface water flows arising from the site prior to the proposed development, while reducing the flood risk to the site itself and elsewhere taking climate change into account. Information on SUDS is provided in the 'Interim Code of Practice for Sustainable Drainage Systems' published by the National SUDS Working Group in July 2004, as well as Ciria documents including C697 'The SUDS Manual'.
- 3.16. There are a number of potential SUDS techniques that might be used on any particular site. These include pervious pavements and infiltration devices such as soakaways and infiltration trenches, as well as flow balancing methods which include grass swales, ponds, detention basins and underground storage facilities. The use of infiltration devices depends on the underlying soil having a suitable permeability to accept the infiltration of surface water runoff to ground. The presence of made ground, a high water table or contamination in the underlying soil may preclude the use of infiltration devices.
- 3.17. The Geology maps for the area suggest that the underlying ground conditions in this area would be clay, which Indicates that soakaways would be unsuitable due to the low permeability of clays. This should be confirmed on site prior to detailed design.

Proposed Surface Water Drainage Arrangements

- 3.18. The Practice Guide Companion to PPS25 advises that runoff from proposed sites should be at Greenfield rates for the site before it was developed. Therefore the proposed development would be positively drained with flows balanced to match the existing runoff for the site.
- 3.19. The Practice Guide to PPS25 advises that guidance on the calculation of site runoff rates is given in Defra/Environment Agency Technical Report W5-

074/A/TR/1 Revision C September 2005, 'Preliminary rainfall runoff management for development'. This Technical Report advises that the Environment Agency will normally require that for the range of annual flow rate probabilities, up to and including the 1% annual probability (1 in 100 year event), the developed rate of runoff into a watercourse should be no greater than the undeveloped rate of runoff for the same event. The purpose of this is to retain a natural flow regime in the receiving watercourse and not increase peak rates of flow for events of an annual probability greater than 1%. Three annual probabilities merit specific consideration; 100%, 3.33% and 1%, corresponding to the 1 in 1 year, 1 in 30 year and 1 in 100 year events respectively.

- 3.20. Technical Report W5-074A/TR/1 Revision C states that the Institute of Hydrology Report 124 'Flood Estimation for Small Catchments' (IH Report 124) is to be used to determine peak Greenfield runoff rates for development sites of up to 200 hectares. The guidance also states that for developments smaller than 50 hectares the analysis for determining the peak Greenfield discharge rate should use 50 hectares in the formula and linearly interpolate the flow rate based on the ratio of the site area to 50 hectares.
- 3.21. The site currently is divided into four separate sections for drainage.
 - i) Area to north of site draining to existing unnamed Watercourse. (8.9 Ha)
 - ii) Area to south of site draining to existing unnamed Watercourse (1.0 Ha)
 - iii) Area to south of site draining to ditch network adjoining Bennetts Water Park. (2.7Ha)
- 3.22. The peak Greenfield runoff rates for these three separate areas have been determined using Micro Drainage's WinDes software system, based on the method set out in IH Report 124. A copy of the Micro Drainage results output for 50 hectares is reproduced in Appendix 7, for the 1 in 1, 30 and 100 year events including climate change (The 1 in 100 year including climate change is equivalent of the 1 in 360 year event).
- 3.23. A summary of the Greenfield runoff rates for the 1 in 1, 30 and 100 year events including climate change, for a 50 hectare site and for the total site area (excluding POS) draining to the existing ditch system are shown in Table 1

below:-

Return Period (Years)	1	30	360
Greenfield runoff rate for 50 Ha (I/s)	209	557	1039
Greenfield runoff rate for area i) (I/s)	37.2	99.1	184.9
Greenfield runoff rate for area ii) (I/s)	4.2	11.1	20.8
Greenfield runoff rate for area iii) (I/s)	11.3	30	56.1

Table 1 – Greenfield runoff rates

- 3.24. Preliminary calculations have been undertaken using Micro Drainage's WinDes software system to establish that it will be feasible to balance surface water runoff to existing runoff rates up to the 1 in 100 year event, including an appropriate allowance to take account of climate change.
- 3.25. To enable the discharge flows to be attenuated it is necessary to provide storage. This storage should be divided between that needed for the 30 year event which should be stored in the adoptable system and the remaining requirement for storage up to and including the 1 in 100 year event including an allowance for climate change. The approximate volumes of storage needed are summarised in Table 2 below.

Drainage Area	i)	ii)	iii)
Approximate storage required for	1990	170	320
30 year event (m ³)			
Approximate storage required for	1252	90	300
100 year event including climate			
change (m ³)			

Table 2 – Summary of approximate storage requirements m³

3.26. The form of storage up to the 30 year event will need to be either in oversized pipes/culvert or in Wessex Water approved storage units. The remaining storage if adopted by Wessex will also need to be in the form of oversized pipes/culvert or in Wessex water approved storage units. If the remaining storage remains private then it could also be in the form of an off-line pond or other storage structures.

3.27. Copies of the Micro Drainage WinDes source control results for the 1 in 1, 30, and 100 year events plus a 30% increase in peak rainfall intensity to take account of climate change, are contained in Appendix 8. Discharge from the storage tanks should be limited to a maximum of the difference between the allowable 30 year discharge and the 100 year plus climate change discharge rate. The current calculations provide a conservative approach assuming that there is no discharge from the 100 + 30% storage. A summary of the maximum discharge compared to the allowable discharge, is shown in Tables 3 below:-

Return Period	1	30	Max Discharge from
			100 + 30% storage
Outflow from area i) (I/s)	37.1	96.9	-
Allowable Greenfield Runoff (I/s)	37.2	99.1	85.9
Outflow from area ii) (I/s)	4.2	11.1	-
Allowable Greenfield Runoff (I/s)	4.2	11.1	9.7
Outflow from area iii) (I/s)	11.3	30	-
Allowable Greenfield Runoff (I/s)	11.3	30.0	26.1

Table 3 – Summary of Flows (I/s)

3.28. If Code for Sustainable Homes to be achieved then volume would need to be balanced by either water recycling units or the rate of discharge from the site would need to be reduced to either:

A: the pre-development site's estimated mean annual flood flow rate (Qbar);

B: 21/s/ha

C: a minimum flow rate (litres per second), based on good practice guidelines to prevent easy blockage, by ensuring the outlet throttle is not too small.

This would require greater storage than is currently proposed and would need to be considered at detailed design stage.

3.29. From an inspection of Tables 2 and 3 it can be seen that it will be feasible to balance surface water runoff from the proposed development on the site to the Greenfield runoff rates for all events up to the 1 in 100 year event, including an appropriate allowance to take account of climate change.

3.30. During detail design the exact location and size of the storage required will need to be confirmed to ensure adequate space is left to accommodate the required storage.

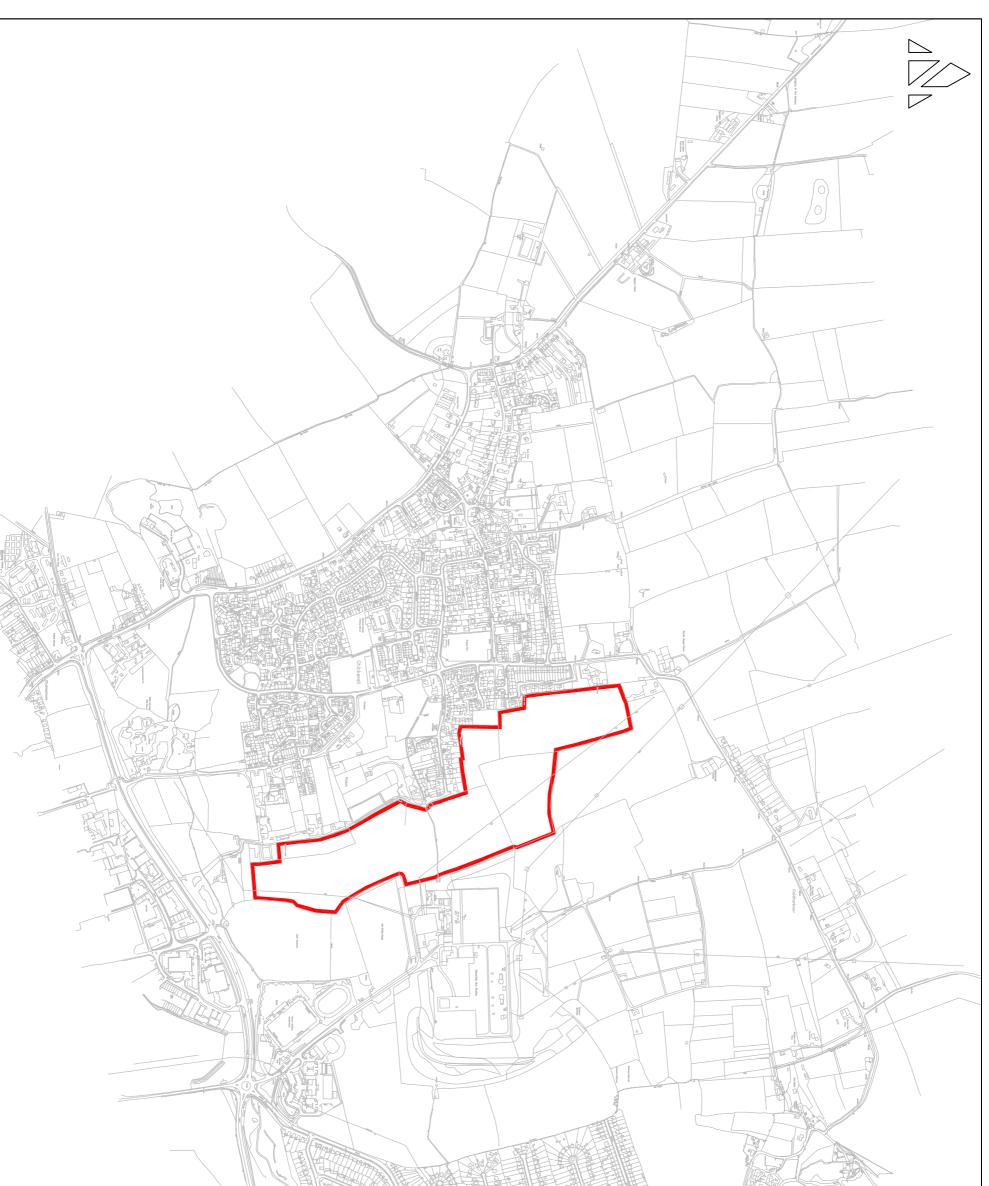
Off-Site Impacts

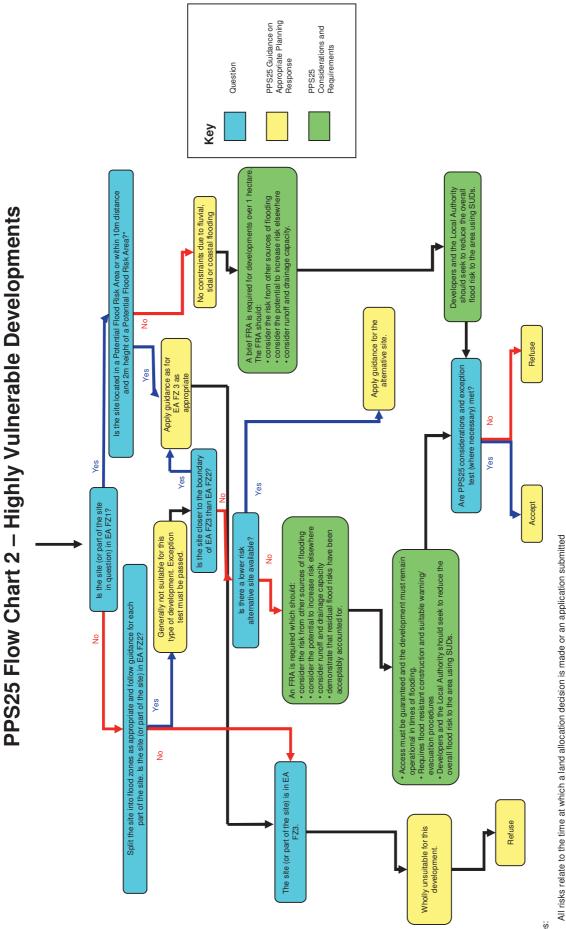
- 3.31. The discharge rate from the site when developed will remain the same or reduced to that which currently prevails, meaning there will be no increase to the rate of flows reaching the Southill Watercourse or ditch network from the site.
- 3.32. This approach should ensure that the impact on Southill Watercourse will not increase the risk of flooding downstream in the Southill residential area and precinct.

Proposed Foul Water Drainage Arrangements

- 3.33. The foul drainage for the site is separated into the same for areas as the surface water drainage.
- 3.34. It is proposed that each of these areas will drain to existing foul or combined sewers located as follows:
 - i) To existing combined sewer crossing the site by the Southill Watercourse
 - ii) To existing combined sewer crossing the site by the Southill Watercourse

iii) To existing combined sewer crossing the site immediately to north of existing ditch network adjoining Bennetts Water Park

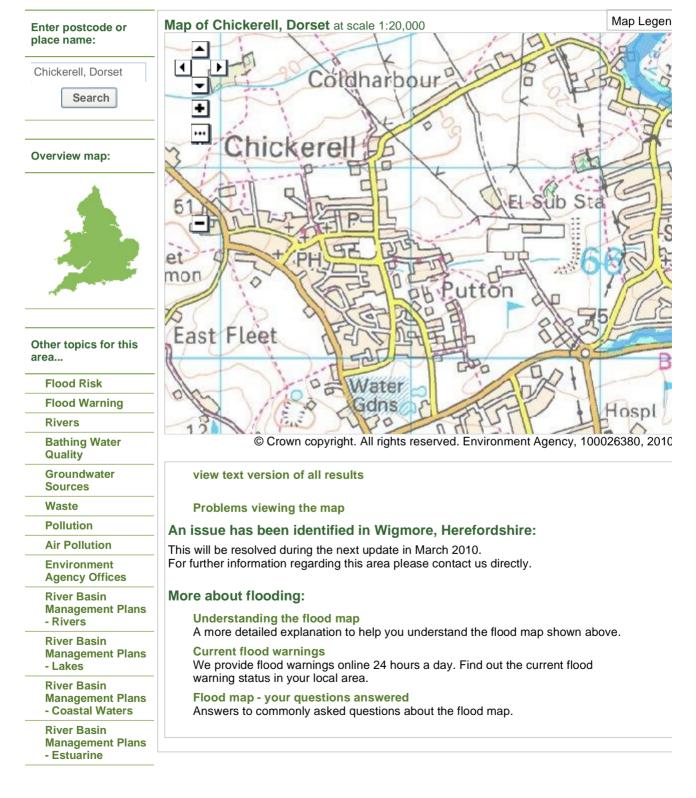

3.35. From the existing ground levels it appears that a gravity sewer connection should be possible at all locations. Exact flow rates and points of connection will need to be agreed with Wessex Water prior to detailed design


4. CONCLUSIONS

- 4.1. This Flood Risk Assessment (FRA) has been prepared on behalf of Persimmon Homes in connection with the promotion of land for residential development at land at Chickerell, near Weymouth.
- 4.2. The site is situated immediately to the east of Chickerell, with Coldharbour Lane to the north and the B3157 to the south. A large electricity substation is situated to the east of the site. The Environment Agency's Flood Map indicates that the site lies within Flood Zone 1 and therefore is safe from flooding during greater than 1 in 1000 year events.
- 4.3. Surface water discharges from the site will be the same or lower than the existing Greenfield runoff, with discharge rates being attenuated, by several potential methods such as onsite tanks, culverts or off-line ponds.
- 4.4. Thought will need to be given to the size and location of the required storage units during detailed design to ensure adequate space is provided. Consideration will also need to be given to the requirements of the Code for Sustainable Homes.
- 4.5. Foul water flows arising from the site will be discharge to either an existing foul of combined sewer either crossing the site or in the immediate vicinity. Based on existing ground levels it is anticipated that the connections could be made by a gravity sewer.
- 4.6. This Flood Risk Assessment demonstrates that the proposed flood risk management measures would ensure that the proposed development would remain operational and safe for users and would not increase flood risk elsewhere, including Southill.
- 4.7. The overall conclusion drawn from this Flood Risk Assessment is that the proposed development could proceed without creating an unacceptable flood risk, in accordance with PPS25.

Appendices

Drawing Title Location Plan P482/12 Dawing No. P482/12 Rev A Date February 2010 Scale Scale 1:10,000 @A3 Date Date 1:10,000 @A3 Date Checked By TS Checked By E-Mail Istater@plapic.com File Ref. P482_12.dwg	A 250310 Red Inc. boundary updated ATBD Rev Date Description Initiats Client Persimmon Homes South Coast Project Land at Chickerell	Key: Site Boundary (Indicative Only)	Stratton Park House, Wanborough Road Swindon, SN3 4HG 01793 82800 Fasimile 01793 835500 Email admin@plaplc.com Website www.plaplc.com



Notes:

- ÷
- Development should not be permitted where existing sea or river defences, properly maintained, would not provide an acceptable standard of safety over the lifetime of the development, as such land would be extremely vulnerable should a flood defence embankment or sea wall be breached, in particular because of the speed of flooding in such circumstances. Ri
- Minimum standard of defence for fluxial risk areas is 1:100 + climate change, and for tidal risk areas is 1:200 + climate change. с.
- Information above based on Table 7.2a in the SFRA (Planning response to sequential characterisation of flood risk). Refer to PPS25 for more detailed guidance. 4
- "This width and height allowance of 10m and 2m is to take into account the potential increase in the extent of the Potential Flood Risk Area due to climate change and the large uncertainty in the extents of the Potential Flood Risk Areas. 5.

Flooding

http://maps.environment-agency.gov.uk/wiyby/wiybyController?x=364500.0&y=805... 12/02/2010

Flood Risk Assessment (FRA) Guidance Note 1

Development Greater Than 1 Hectare (ha) in Flood Zone 1 (and Critical Drainage areas less than 1ha)

Environment Agency guidance on requirements for undertaking a Flood Risk Assessment (FRA) for planning applications.

Flood Risk Assessments at all levels should be undertaken under the supervision of an experienced flood risk management specialist (who would normally be expected to have achieved chartered status with a relevant professional body such as the Institution of Civil Engineers (ICE) or the Chartered Institution of Water and Environmental Management (CIWEM)).

This guidance note principally relates to the commissioning and undertaking of FRA studies for development greater than 1.0 ha in Flood Zone 1 (see footnote1). It is designed:

- a. to consider the principles of the sustainable drainage² of surface water;
- b. for use where works may affect watercourses or flood defences; or
- c. for use where a Critical Drainage³ area has been identified by the Environment Agency, or where the Local Planning Authority (LPA) has identified that a drainage problem exists on which they would like assurance from the developer that flood risk has been addressed.

Exceptions to this guidance note

For sites less than 1 hectare in Flood Zone 1, a formal FRA will not *usually* be required (see Table D1 of Planning Policy Statement 25 - PPS25). In these cases, applicants are advised to refer to the standard comments on managing surface water drainage as set out in our standing advice on development and flood risk. However, where (b) and/or (c) above apply, a FRA may still be required for development of less than 1 hectare and this guidance note can be used to inform the FRA.

incident hotline 0800 80 70 60

¹ Flood Zone 1 comprises land assessed as having a less than 1 in 1000 annual probability of river or sea flooding (<0.1%) in any year.

²Sustainable Drainage Systems (SUDS) seek to mimic natural drainage systems and retain water on, or near to the site in contrast to traditional drainage approaches which tend to pipe water off site as quickly as possible. When considering site drainage in Flood Zone 1, the focus within the FRA must be on flood risk management, but the use of SUDS should also seek to maximise opportunities for water quality and amenity benefits.

³ Critical Drainage Areas are areas with drainage problems that have been identified as such by the Environment Agency. A full list of Critical Drainage areas can be access from the Environment agency website on the Flood Risk Standing Advice pages - <u>www.environment-agency.gov.uk</u>

Why is a FRA required?

In Flood Zone 1, where the risk of flooding from rivers or the sea is classified as low, a FRA is still required **but it should be focused on the management of surface water run-off**. Development that increases the amount of impermeable surfaces can result in an increase in surface water run-off, which in turn can result in increased flood risk both on site and elsewhere within the catchment⁴. This is particularly important for larger scale sites, which have the potential to generate large volumes of surface water run-off. In addition, the site may also still be at risk from other sources of flooding (e.g. groundwater and overland runoff), which are not considered in the mapping of Flood Zones. Further information on flooding from other sources is provided in Annex C of PPS25.

What should be in the FRA?

The detail and technical complexity of a FRA will reflect the scale, nature and location of the development. Where available, reference should be made to the Strategic Flood Risk Assessment (SFRA) for locally specific guidance and information.

The following list sets out information that should be submitted as a FRA for developments covered by this guidance note:

Plans

- A location plan that includes geographical features, street names and identifies the catchment, watercourses or other bodies of water in the vicinity.
- A plan of the site showing:
 - i. existing site;
- ii. development proposals; and
- iii. identification of any structures (e.g. embankments), which may influence local flood flow overland or in any watercourses (e.g. culverts) present on the site.

Surveys

 Site levels - both existing and proposed. Reference to Ordnance Datum⁵, may be required where details of context of the site to its surroundings is needed.

Assessments

The Applicant should submit:

• Proposals for surface water management that aims to not increase, and where practicable reduce the rate of runoff from the site as a result of the

incident hotline 0800 80 70 60

⁴ Catchment - The land which drains (normally naturally) to a given point on a river or drainage system.

⁵ Ordnance Datum or the abbreviation 'OD' is the mean level of the sea at Newlyn in Cornwall from which heights above sea level are taken. The contour lines on Ordnance Survey maps measure heights above OD for example, though these are not accurate enough for a FRA.

development (in accordance with sustainable drainage principles, and the Local Planning Authority's published SFRA).

- Information about the surface water disposal measures already in place and their state of maintenance.
- An assessment of the volume of surface water run-off likely to be generated from the proposed development.
- Allowance in design for how the increased frequency and intensity of rainfall that is predicted as a result of climate change will affect the proposal (see Annex B of PPS25).
- Information about other potential sources of flooding, if any, that may affect the site e.g. streams, surface water run-off, sewers, groundwater, reservoirs, canals and other artificial sources or any combination of these; including details on how these sources of flooding will be managed safely within the development proposal.
- Confirmation as to whether Environment Agency consent is needed for any aspect of the work, and whether this has been applied for or not.

Dry islands

Some areas within Flood Zone 1 are surrounded by areas at a higher risk of flooding i.e. areas falling within Flood Zones 2 and 3. In certain cases development within such 'dry islands' can present particular hazards to public safety such as people being surrounded by water and needing to be rescued. The distribution of dry islands and risks posed by them in terms of access/exit vary considerably across the country. If you are in any doubt about how flood risks associated with 'dry islands' may affect your area, please contact your local Environment Agency Planning Liaison team on 08708 506 506.

Climate Change

As highlighted above, the frequency and intensity of rainfall is predicted to increase as a result of climate change and an allowance for how this will affect the proposal will need to be factored into design.

In addition rising sea levels may put some areas currently within Flood Zone 1 at risk from tidal flooding. These areas should have been identified in your Local Planning Authority's Strategic Flood Risk Assessment.

What is the Environment Agency's Role?

We recommend that pre application discussions take place for developments covered by this guidance note. We will usually provide comments at the planning application stage on FRAs covered by this guidance note (unless indicated otherwise by Environment Agency Planning Liaison team in the area where the development is proposed).

incident hotline 0800 80 70 60 floodline 0845 988 1188

We have three main interests:

- Ensuring that the design of the site drainage system meets the aims of sustainable drainage management, and does not increase, and where practicable reduces, the current runoff from the site.
- If the proposal is within the Byelaw Distance⁶ of a Main River⁷, sea defence, or flood defence structure; or includes diversion, culverting or

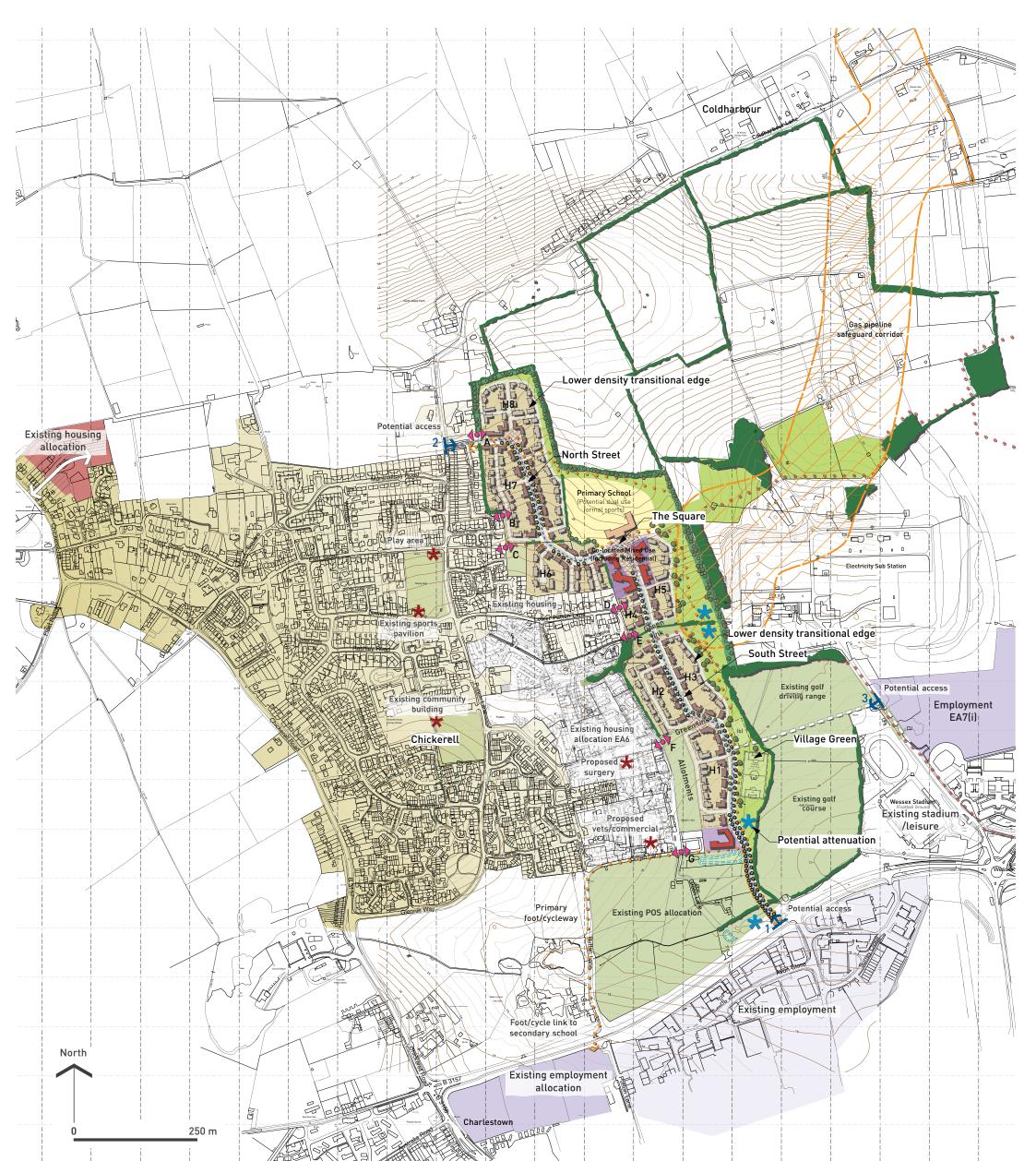
erection of control structures in an Ordinary Watercourse⁸, then formal consent for the proposal may also be required from us.

 Prior to carrying out a FRA, developers should contact the Environment Agency and other operating authorities (such as the engineering department of the local authority or Internal Drainage Board as appropriate) to establish whether information is available relating to flood risk at the site they propose to develop. Account should also be taken of local knowledge of flooding held in the community. Our records of flooding are not exhaustive and the absence of information does not mean that a site will not flood. Whilst we can provide information on flooding from rivers and the sea, we only record known problems relating to other sources.

Sources of information:

- 1. PPS25 Practice Guide and Appendix F of the PPS⁹.
- 2. CIRIA C522 Sustainable Urban Drainage Systems-design manual for England and Wales.
- 3. Interim Code of Practice for Sustainable Drainage Systems¹⁰.
- 4. The Local Planning Authority's Development Plan and Strategic Flood Risk Assessment.

⁶ Byelaw distance varies across the country. To find out what distance applies in your area call 08708 506 506 and ask to speak to a member of your local Development Control team in the area where the development is planned.
⁷ Main Rivers are watercourses designated as such on Main River maps and are generally the larger arterial <u>watercourses. Main Rivers are indicated</u> with a red line as part of the Flood Zones on maps held by the Local Planning Authority and on maps held by the Environment Agency.


incident hotline 0800 80 70 60 floodline 0845 988 1188

⁸ An Ordinary Watercourse is any watercourse that doesn't form part of a Main River

⁹PPS25 and the PPS25 Practice Guide can be viewed at -

http://www.communities.gov.uk/planningandbuilding/planning/planning/planningpolicyguidance/planningpolicystatements/plan mingpolicystatements/pps25/?lang=_e ¹⁰ Interim Code of Practice for Sustainable Drainage Systems – this document provides advice on design, adoption

¹⁰ Interim Code of Practice for Sustainable Drainage Systems – this document provides advice on design, adoption and maintenance issues and a good overview of other technical guidance on SUDS. It is available electronically on both the Environment Agency's web site at: <u>www.environment-agency.gov.uk</u> and CIRIA's web site at: <u>www.ciria.org.uk</u>.

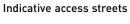
Key

Proposed residential uses (10.16ha, 375 dwellings @37dph)

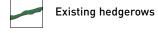
Mixed use co-located with primary **school** (including circa 20 residential dwellings) (0.93ha)

Primary school (2.1ha)

Proposed bus route



Potential pedestrian/cycle access connections (A-G)



Proposed strategic buffer planting

Outdoor sports (a) Sports pitch (b) Kickabout area

| T 01285 641717 | F 01285 642348 | www.ppg-llp.co.uk | Team MCC/SHF/CT | 26 March 2010 | 1:5000@A2 1:7500@A3 | drwg. P.0577_03-1J | Client: Persimm

Proposed foot/cycleways (including diversions where logical)


Gas pipeline safeguarding corridor

Possible locations of flood attenuation areas

Contours at 1m intervals

Linear Park and Wildlife Corridor -

landscape (potential for informal,

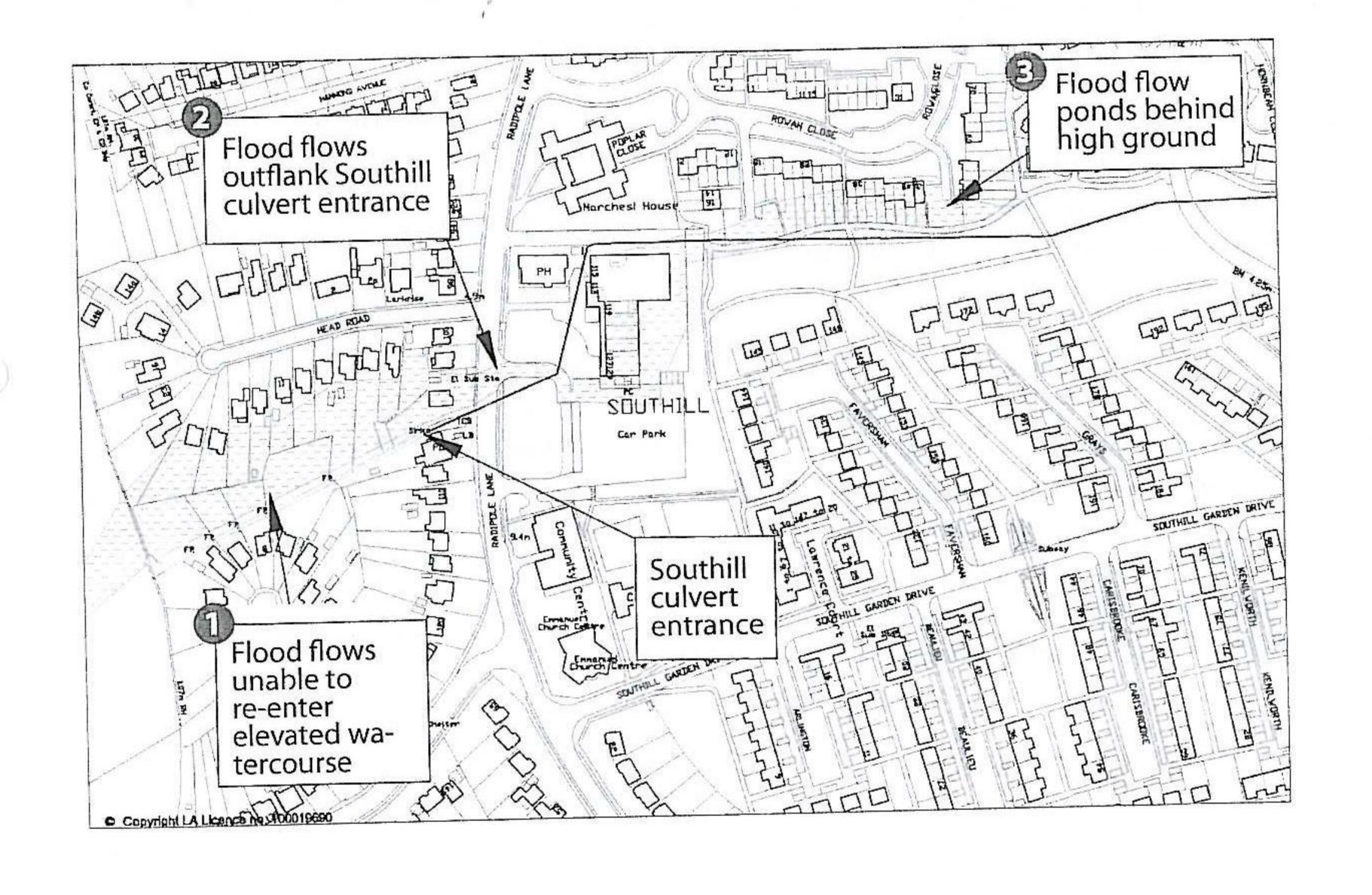
formal recreation SANGS and other

allowing transition to wider

green infrastructure uses)

Existing Vegetation

Southill Watercourse, Weymouth Flood Study Results 13th December 2008 flood event


AUGUST 2009

This is the second newsletter, following the flooding in Southill, and sets out the findings of the preliminary flood study.

The Councils of Weymouth & Portland

What caused the flooding? The volume of flow overwhelmed the watercourse upstream of Radipole Lane and spilled out across the low-lying back gardens of Mead Road and Mayfield Close ①. This overland flooding bypassed the entry to the Southill Culvert, which conveys normal flow, and flowed across Radipole Lane ② and into the Southill precinct area. Floodwaters then ponded behind higher ground in the valley bottom to the rear of Rowan Close ③. Local gulleys were unable to drain the 'ponded' floodwater back into the Southill culvert.

and West Dorset wish to thank all those who completed and returned flood questionnaires which have helped during the preliminary study:

Weymouth & Portland Borough Council and West Dorset District Council are working in partnership to resolve flood risks along the Southill Watercourse, under powers conferred by the Land Drainage Act.

How much rain fell? A rain gauge within Chickerell recorded nearly 45mm of rain fell in under 1 hour.

Where did the flood flow come from? The Southill watercourse originates from Chickerell but most of this flow is diverted by a culvert into Chafey's Lake without passing through Southill. The flood flows through Southill were generated by runoff from the fields and hills immediately to the west including the National Grid sub-station.

Did the Water Level of Radipole Lake cause flooding? No. Lake levels are several metres lower than ground levels through Southill and did not cause or worsen the flooding. What are the main flood alleviation options?

- Ensure flood flow does not bypass the entrance to the Southill culvert. This would be achieved by enlarging the watercourse through the back gardens (of Mayfield Close & Mead Road) and constructing an upstream flood bank.
- 2. Construct a flood storage pond upstream (of Mayfield Close & Mead Road) to safely hold back floodwaters until it may be safely and gradually released.
- 3. A combination of a flood storage pond and local improvements to the watercourse channel in the back gardens of Mayfield Close & Mead Road.

Did the Southill culvert cause the flooding? The culvert was not the cause of the flooding; indeed there was spare capacity within the culvert. Calculations show that the culvert capacity would only be exceeded on average once in 50 years. A CCTV survey of the Southill culvert has indicated it to be in relatively good condition.

How likely is it that flooding will occur again in Southill? It is difficult to know with any certainty but calculations suggest that floodwaters will cross Radipole Lane on average once in 10 years plus.

Are the flood events which occurred in January and February 2009 related to the December 2009 event? No. These events were caused by blockage within the culvert outfall at Radipole Lake. This blockage caused water to back-up and surcharge out of upstream manholes and gulleys. The blockage, caused by a piece of chain link fencing, has since been removed by What happens next? Weymouth & Portland Borough and West Dorset District Councils will assess the viability of undertaking flood alleviation work, which will involve talking to landowners and carrying out further surveys and design work to size and cost flood alleviation options.

In the meantime, quick-win works will be carried out this year:

- The Council will construct an additional multi-gulley drainage system at the Rowan Close car park. This will provide a 'safety valve' to evacuate floodwaters back into the Southill Culvert.
- Wessex Water will replace the existing screen at the Southill culvert outfall in Radipole Lake, with a new screen which is less prone to blockage.

the Council.

What measures could be undertaken now to help reduce the risk of future flooding? Immediate measures could include better culvert screens, more inspections of screens and extra gulley capacity to drain ponded floodwaters into the Southill culvert in case of future emergency.

Engineering Section Weymouth & Portland Borough Council, Council Offices, North Quay, Weymouth, DT4 8TA

W&PBC Corporate Priority 3: Protect and improve the Natural and Built Environment.

PFA Consulting		Page 1
Stratton Park House	P482 - Chickerell	
Wanborough Road	Greenfield Runoff	
Swindon SN3 4HG	Rates	
Date February 2010	Designed By ATBD	Dentre
File	Checked By	
Elstree Computing Ltd	Source Control W.11.4	
	IH 124 Mean Annual Flood	
	Input	
	Inpac	
Return Period	(years) 360 Soi	1 0.450
Area (Ha)		n 0.000
SAAR (mm)	771.000 Region Number	r 7
	Results 1/s	
	QBAR Rural 245.9	
	QBAR Urban 245.9	
	Q 360 years 1039.0	
	Q 1 year 209.1	
	Q 2 years 216.7	
	Q 5 years 314.8	
	Q 10 years 398.4	
	Q 20 years 492.7	
	Q 25 years 528.3	
	Q 30 years 557.4	
	Q 50 years 644.4	
	Q 100 years 784.6 Q 200 years 922.3	
	Q 200 years 922.3 Q 250 years 966.6	
	Q 1000 years 1269.1	
	x	

PFA Consulting		Page 1
Stratton Park House	P482 - Chickerell	
Wanborough Road	Area i Surface Water	
Swindon SN3 4HG	Drainage	
Date March 2010	Designed By ATBD	
File NORTH TO DITCH AND S		Contractor B
Elstree Computing Ltd	Simulation W.11.4	
	Global Variables	
Region	FSR - Engla	
Return Peric M5-60 (mm)	od (yrs)	30 19.500
Ratio R		0.450
Volumetric F	Runoff Coef	0.750
Profile Type	2	Summer
PIMP (%)		100
Areal Reduct Storm Durati		1.000
Hot Start (r		0
Hot Start Le		0
	lloss Coefficient	0.500
	* 10m ³ /ha Storage	2.000
-	'Hectare (l/s) Flow – % of Total Flow	0.00
Inlet Coeff		0.800
	nput Hydrographs	0
	me/Area Diagrams	0
Number of Bi		0
Number of Ov	verflows If-Line Controls	0 6
	-Line Controls	4
Starting Storm file name		
F:\WORKFILE\P482\WINDES\INDICA	TIVE SURFACE 01_10\NORTH TO DITCH A	ND SIDES SWS
Outfal. Pipe Num	ber MH/No (m) (m) (mm	.) (mm)
1.	005 22 20.000 17.662 120	0 0
	@1002 2000 Migno Droinego	

©1982-2009 Micro Drainage

						Deres 0
PFA Consulting		- 10	0 ~1 '			Page 2
Stratton Park House			2 - Chi			
Wanborough Road			a i Sur	tace Wa	ater	
Swindon SN3 4HG			inage			
Date March 2010			igned B			
File NORTH TO DITCH AN	D S		cked By		-	
Elstree Computing Ltd		Sim	ulation	W.11.4		
	<u>C</u>	n-Lir	ne Contr	ols (He	ead/Flow	<u>)</u>
US		olume	Ctrl		Headloss	Flow
		(m³)	MH Name	(m)	(m)	(1/s)
1.	.000 5	59.496	18	32.598	0.3	152.4000
					0.6	115.0000
					0.9	115.0000
					1.4	115.0000
					2.0	115.0000
						115.0000
						115.0000
						115.0000
						115.0000 115.0000
						115.0000
					8.0	115.0000
2.	.000 10	6.007	11	46.845	0.2	60.0000
					0.4	60.0000
					0.6	60.0000
					0.8	60.0000
					1.0 1.4	60.0000
					1.4	60.0000 60.0000
					2.2	60.0000
					2.6	60.0000
2.	.007 24	40.761	18	32.598	0.3	
					0.6	115.0000
					0.9	115.0000 115.0000
					2.0	115.0000
					2.6	
						115.0000
						115.0000
					4.4	115.0000
					5.0	115.0000
						115.0000
					8.0	115.0000
1.	.004 10	2.624	58	17.672	0.2	37.2000
					0.4	37.2000
					0.6	37.2000
					0.8	37.2000
					1.0	37.2000
					1.4	97.1000
					1.8 2.2	97.1000 97.1000
					2.2	97.1000 97.1000
					2.0	27.1000

PFA Consulting		Page 3
Stratton Park House	P482 - Chickerell	
Wanborough Road	Area i Surface Water	
Swindon SN3 4HG	Drainage	
Date March 2010	Designed By ATBD	DETERMINE
File NORTH TO DITCH AND S	Checked By	
Elstree Computing Ltd	Simulation W.11.4	

Off-line Weir Controls

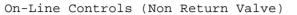
DS/PN	Loop PN	MH Loss	Height above DS PN (m)	Width (m)	Discharge Coefficient
2.007	1.001	0.050	1.500	1.800	0.544
1.001	1.002	0.050	3.000	1.800	0.544
1.002	1.003	0.050	1.900	1.500	0.544
1.003	1.004	0.050	1.750	1.800	0.544
1.004	1.005	0.050	1.750	1.500	0.544
1.005	(None)	0.050	1.750	1.800	0.544

PFA Consulting		Page 4
Stratton Park House	P482 - Chickerell	
Wanborough Road	Area i Surface Water	
Swindon SN3 4HG	Drainage	
Date March 2010	Designed By ATBD	
File NORTH TO DITCH AND S	Checked By	
Elstree Computing Ltd	Simulation W.11.4	

Storage Pond at pipe 1.001 USMH 18

Storage Pond Invert Level (m) 32.598

Depth	Area	Depth	Area	Depth	Area	Depth	Area	Depth	Area	-	Area
(m)	(m²)	(m)	(m²)	(m)	(m²)	(m)	(m²)	(m)	(m²)		(m²)
0.2	325.0 325.0 325.0 325.0 325.0	0.6 0.7 0.8	325.0 325.0 325.0 325.0 325.0	1.2 1.3	325.0 325.0 325.0 325.0 325.0		325.0 325.0 0.0 0.0 0.0	2.1 2.2 2.3	0.0 0.0 0.0 0.0 0.0	2.5	0.0


Storage Pond at pipe 1.005 USMH 58

Storage Pond Invert Level (m) 17.672

Depth (m)	Area (m²)	-	Area (m²)								
0.0	650.0	0.5	650.0	1.0	650.0	1.5	0.0	2.0	0.0	2.5	0.0
0.1	650.0	0.6	650.0	1.1	650.0	1.6	0.0	2.1	0.0		
0.2	650.0	0.7	650.0	1.2	650.0	1.7	0.0	2.2	0.0		
0.3	650.0	0.8	650.0	1.3	0.0	1.8	0.0	2.3	0.0		
0.4	650.0	0.9	650.0	1.4	0.0	1.9	0.0	2.4	0.0		

PFA Consulting	۲ ۲						Pag	re 5			
Stratton Park	,		P482	- Chicke	rell			,			
Wanborough Roa				i Surfac		^		<u>7</u> 2,			
Swindon SN3 4			Drain		c matter	•			SHO UM		
Date March 201				ned By A							
File NORTH TO		AND S		and By	IDD			150	<u>innege</u> .		
					11 4						
HIDDICC COMPUT	Elstree Computing Ltd Simulation W.11.4										
Network Details											
* - II	ndicates	pipe has 1	been mod	ified outs:	lde of Wi	nDes's	Storm/Fou	ıl & S	chedules		
	PN	Length (m)		lope Area .:x) (ha)	T.E. (mins)	Rain Pro		-	Dia (mm)		
	1.000	70.51 (0.141 50	0.00	5.00	1	0.600	0	1050		
i.	* 2.000	44.16 (0.415 10	06.5 0.200	5.00	1	0.600	[]	14		
i i i i i i i i i i i i i i i i i i i	* 2.001	30.45 (0.886 3	34.4 0.100	0.00	1	0.600	[]	14		
k.	2.002			35.6 1.407			0.600	[]	14		
k l	2.005			14.5 1.407			0.600	[]	14		
لا	2.001			11.6 0.200 39.5 0.950			0.600 0.600	[]	14 14		
- 	2.005			39.5 0.950 00.0 0.950			0.600	[]	14 14		
k.	2.000			0.0 0.950			0.600	[]	14		
k.	1.001			22.1 0.000			0.600	[]	14		
k K	1.001			10.1 0.550			0.600	[]	14		
	1.000			10.0 0.000 17.0 0.000			0.600 0.600	[]	14 14		
ŀ	1.001			0.1 0.000			0.600	[]	14		
	PN USI NC		US/IL (m)	US C.Depth (m)	DS/CL (m)	DS/IL (m)	DS C.Depth (m)	Ctrl No.	US/MH (mm)		
1	.000	9 37.578	32.739	3.789	36.886	32.598	3.238		1800		
* 2	.000	10 48.910	47.485	0.225	48.495	47.070	0.225		1050		
		11 48.495			47.576		0.416	2			
		12 47.576			44.797	43.196	0.401		1050		
		13 44.797			41.619		0.366		1050		
		14 41.619			37.685	36.119	0.366		1350		
		15 37.685 16 37.500			37.500 38.128	33.638	2.662 3.859		1350 1500		
-		16 37.500 17 38.128			38.128 36.886	33.069	2.891		1800		
* 1	.001	18 36.886	32.598	3.088	32.349	30.290	0.858	2	2 1800		
-		19 32.349			27.644		0.858	2	1800		
		20 27.644			22.592	20.533	0.858		1800		
		21 22.592				17.972	0.828		1800		
* 1	.005	58 20.000	17.672	1.128	20.000	17.662	1.138	2	2 1800		

PFA Consulting		Page 1
Stratton Park House	P482 - Chickerell	
Wanborough Road	Area ii Surface Water	
Swindon SN3 4HG	Drainage	
Date March 2010	Designed By ATBD	
File SOUTH TO DITCH.SUM	Checked By	
Elstree Computing Ltd	Simulation W.11.4	
	Global Variables	
	<u></u>	
Region	FSR - England	d & Wales
Return Perio		1
M5-60 (mm)		19.000
Ratio R		0.450
Volumetric R		0.750
Profile Type PIMP (%)		Summer 100
Areal Reduct	ion Factor	1.000
Storm Durati		15
Hot Start (m		0
Hot Start Le		0
	loss Coefficient	0.500
	* 10m ³ /ha Storage	2.000
	Hectare (l/s) low – % of Total Flow	0.00
Inlet Coeffi		0.800
	put Hydrographs	0
	me/Area Diagrams	0
Number of Bi		0
Number of Ov	erflows f-Line Controls	0 1
	-Line Controls	3
		5
Starting Storm file name		
F:\Workfile\P482\Windes\Indicat	vive Surface 01_10\SOUTH TO DITCH.SWS	S
E	reely Discharging Outfalls	
-		
Outfall	Outfall C.Level I.Level D,L	В
Pipe Numb	er MH/No (m) (m) (mm)	(mm.)
1.0		0
1.0	001 2 20.000 19.425 1200	0

0

US/PN Volume Ctrl (m³) MH Name

2.000 0.088

US/PN	Volume (m³)	Ctrl MH Name	Invert (m)	Filename (*.ccf)	Headloss (m)	Flow (l/s)
1.000	170.549	2	20.800	South to Ditch	0.2 0.4 0.6 0.8 1.0 1.4 1.8 2.2 2.6 3.0 3.4 3.8	4.2 4.2 11.1 11.1 20.8 20.8 20.8 20.8 20.8 20.8 20.8 20.8
2.001	0.080	2	20.800	South to Ditch	0.2 0.4 0.6 0.8 1.0 1.4 1.8 2.2 2.6 3.0 3.4 3.8	4.2 4.2 11.1 11.1 20.8 20.8 20.8 20.8 20.8 20.8 20.8 20.8

PFA Consulting		Page 3
Stratton Park House	P482 - Chickerell	
Wanborough Road	Area ii Surface Water	
Swindon SN3 4HG	Drainage	
Date March 2010	Designed By ATBD	
File SOUTH TO DITCH.SUM	Checked By	
Elstree Computing Ltd	Simulation W.11.4	

Off-line Weir Controls

DS	/PN	Loop PN	MH Loss	Height above DS PN (m)	Width (m)	Discharge Coefficient
1.	001	2.000	0.050	1.200	1.800	0.544

PFA Consulting		Page 4
Stratton Park House	P482 - Chickerell	
Wanborough Road	Area ii Surface Water	
Swindon SN3 4HG	Drainage	
Date March 2010	Designed By ATBD	Dentración
File SOUTH TO DITCH.SUM	Checked By	
Elstree Computing Ltd	Simulation W.11.4	

Storage Pond at pipe 2.001 USMH

Storage Pond Invert Level (m) 21.875

Depth	Area	Depth	Area	Depth	Area	Depth	Area	Depth	Area	Depth	Area
(m)	(m²)	(m)	(m²)	(m)	(m²)	(m)	(m²)	(m)	(m²)	(m)	(m²)
0.0 0.1 0.2 0.3 0.4	110.0 110.0 110.0 110.0 110.0		110.0 110.0 110.0 110.0 0.0	1.0 1.1 1.2 1.3 1.4	0.0 0.0 0.0 0.0 0.0	1.5 1.6 1.7 1.8 1.9	0.0 0.0 0.0 0.0 0.0	2.0 2.1 2.2 2.3 2.4	0.0 0.0 0.0 0.0 0.0	2.5	0.0

PFA Consulting								P	age 5			
Stratton Park	House		P48	32 - CI	hicker	ell				<u>`</u>		
Wanborough Roa	Nanborough Road				Area ii Surface Water						20	
Swindon SN3 4	Swindon SN3 4HG				Drainage					کحک		
Date March 201	0		Des	signed	By AT	'BD				ENT	meno	
File SOUTH TO I	DITCH.	SUM	Che	ecked 1	Ву						<u>. ner</u>	<u>P</u>
Elstree Comput	ing Lt	d	Sin	nulatio	on W.1	1.4						
* - In	dicates	pipe has	been n		ork De 1 outsid		nDes's	Storm/E	oul &	Schedu	ıles	
* - In	dicates PN	pipe has Length (m)	been m Fall (m)		l outsic Area			Storm/E k (mm)	Foul & Hyd Sect		lles	
		Length (m)	Fall (m)	nodified Slope	l outsic Area (ha)	de of Wir T.E. (mins)	Rain Pro	k	Hyd Sect	Dia (mm)	ules	

* 1.001 2.00 1.375 1.5 0.000 0.00 1 0.600

PN

* 1.000

* 2.000

* 2.001

* 1.001

No.

(m)

1 23.429 21.000

2 23.000 20.800

23.100 21.475 23.050 21.450

(m)

US

(m)

USMH US/CL US/IL US DS/CL DS/IL DS Ctrl US/MH

(m)

1.428 23.000 20.800

1.250 23.050 21.450 1.225 23.000 21.425

1.825 20.000 19.425

(m)

o 375

(mm)

1200 3 1200

1350

No.

0.200 12 1350

DS

(m)

1.200

1.225

1.200

PFA Consulting	J					Page 6		
Stratton Park	House	P482 -	Chickere	ell		^		
Wanborough Roa	ad	Area i	i Surface	e Water				~ ~
Swindon SN3 4	HG	Draina	ge			<u>yu</u>	дO	\bigcirc
Date March 201	_0	Design	ed By ATH	BD			HER SOL	
File SOUTH TO	DITCH.SUM	Checke	-					تكريح
Elstree Comput	ing Ltd		tion W.11	1.4				<u> </u>
	y Wizard of "(Margin for Flood DTS Status DVD Status Inertia Status	Results Risk warnin	for Desing (mm)	ign Storm	<u>າຮ</u>	750 OFF ON ON		
Profile(s) Duration(s) (m		2 P	Sum 15,		nter	(extended) 360, 480, 90		
Profile(s) Duration(s) (m Return Period(nins) (years)	2 P	Sum 15, 1,	mer and Win 30, 60, 1 30, 100	nter			
Profile(s) Duration(s) (m	nins) (years)	55	Sum 15, 1,	mer and Win 30, 60, 1	nter			
Profile(s) Duration(s) (m Return Period(nins) s) (years) e (%)	Climate	Sum 15, 1, 0, F	mer and Win 30, 60, 1 30, 100	nter	360, 480, 9	60, 1440 5 O/F	
Profile(s) Duration(s) (m Return Period(Climate Change PN	nins) (s) (years) e (%) Storm Return Period	Climate Change	Sum 15, 1, 0, Rank F Su	mer and Wi 30, 60, 1 30, 100 0, 30 First X archarge	nter 20, 240, First Y	360, 480, 9 First Z	60, 1440 5 O/F	
Profile(s) Duration(s) (m Return Period(Climate Change PN 1.000 1	nins) (s) (years) e (%) Storm Return Period	Climate Change	Sum 15, 1, 0, F Rank F Su 1 100/	mer and Wi 30, 60, 1 30, 100 0, 30 First X	nter 20, 240, First Y	360, 480, 9 First Z	60, 1440 5 O/F	
Profile(s) Duration(s) (m Return Period(Climate Change PN 1.000 1 2.000	nins) (years) e (%) Storm Return Period .20 Winter 1	Climate Change 0%	Sum 15, 1, 0, F Rank F Su 1 100/ 1 100/ 1 100/	mer and Wi: 30, 60, 1 30, 100 0, 30 First X urcharge /30 Summer /30 Summer /30 Summer	nter 20, 240, First Y	360, 480, 9 First Z	60, 1440 5 O/F	
Profile(s) Duration(s) (m Return Period(Climate Change PN 1.000 1 2.000 2.001	nins) (years) e (%) Storm Return Period 20 Winter 1 15 Summer 1	Climate Change 0% 0%	Sum 15, 1, 0, F Rank F Su 1 100/ 1 100/ 1 100/	mer and Wi 30, 60, 1 30, 100 0, 30 First X urcharge /30 Summer /30 Summer	nter 20, 240, First Y	360, 480, 9 First Z	60, 1440 5 O/F w Act	
Profile(s) Duration(s) (m Return Period(Climate Change PN 1.000 1 2.000 2.001	nins) s) (years) s (%) Storm Return Period 20 Winter 1 15 Summer 1 15 Summer 1 20 Winter 1 20 Winter 1	Climate Change 0% 0%	Summ 15, 1, 0, Rank F Su 1 100/ 1 100/ 1 100/ 1 1/ Flooded	mer and Wi 30, 60, 1 30, 100 0, 30 First X urcharge /30 Summer /30 Summer /30 Summer /30 Summer /30 Summer	nter 20, 240, First Y Flood	360, 480, 9 First Z Overflow 100/30 Sum	60, 1440 5 O/F w Act	
Profile(s) Duration(s) (m Return Period(Climate Change PN 1.000 1 2.000 2.001 1.001 1 Lvl PN Ex. PN	nins) (s) (years) (s) (s) Storm Return Period 20 Winter 1 15 Summer 1 15 Summer 1 15 Summer 1 20 Winter 1 Water Lvl. Su (m) D	Climate Change 0% 0% 0% 0% urcharged mepth (m)	Sum 15, 1, 0, F Rank Su 1 100/ 1 100/ 1 100/ 1 100/ 1 100/ 1 100/ 1 100/ 1 00/ 1 0/ 1 00/ 1 0/ 1 0/	mer and Wi 30, 60, 1 30, 100 0, 30 First X archarge /30 Summer /30 Summer /30 Summer /30 Summer /30 Summer /30 Summer /30 Summer	nter 20, 240, First Y Flood Overflow (1/s)	360, 480, 9 First Z Overflow 100/30 Sum Pipe Flow (1/s)	60, 1440 O/F Act mmer 15 Status	
Profile(s) Duration(s) (m Return Period(Climate Change PN 1.000 1 2.000 2.001 1.001 1 Lvl PN	nins) (s) (years) e (%) Storm Return Period 20 Winter 1 15 Summer 1 15 Summer 1 20 Winter 1 Water Lvl. Su (m) D	Climate Change 0% 0% 0% 0% urcharged mepth (m)	Sum 15, 1, 0, F Rank F Su 1 100/ 1 100/ 1 100/ 1 100/ 1 100/ 1 100/ 1 100/ 1 00/ 1 00	mer and Wi 30, 60, 1 30, 100 0, 30 First X urcharge /30 Summer /30 Summer /30 Summer /30 Summer /30 Summer	nter 20, 240, First Y Flood	360, 480, 9 First Z Overflow 100/30 Sum Pipe Flow	60, 1440 5 O/F w Act nmer 15	
Profile(s) Duration(s) (m Return Period(Climate Change PN 1.000 1 2.000 2.001 1.001 1 Lvl PN Ex. 1.00	ains) (s) (years) e (%) Storm Return Period 20 Winter 1 15 Summer 1 15 Summer 1 20 Winter 1 Water Lvl. Su (m) D 00 21.275 00 21.475	Climate Change Change 0% 0% 0% 0% urcharged epth (m) -0.725	Sum 15, 1, 0, F Rank F Su 1 100/ 1 100/ 1 100/ 1 100/ 1 100/ 1 100/ 1 100/ 1 00/ 1 00	mer and Wi 30, 60, 1 30, 100 0, 30 First X archarge /30 Summer /30 Summer	nter 20, 240, First Y Flood	360, 480, 90 First Z Overflow 100/30 Sum Pipe Flow (1/s) 30.9	60, 1440 с О/F м Аст mmer 15 Status О К	

PFA Consulting		Page 7
Stratton Park House	P482 - Chickerell	
Wanborough Road	Area ii Surface Water	
Swindon SN3 4HG	Drainage	
Date March 2010	Designed By ATBD	
File SOUTH TO DITCH.SUM	Checked By	
Elstree Computing Ltd	Simulation W.11.4	

Summary Wizard of "CRITICAL BY RETURN PERIOD" (Rank 1 by Max Level) Results for Design Storms

Margin for Flood Risk warning (mm) 750 DTS Status DVD Status OFF ON Inertia Status ON 2.5 second increment (extended) Analysis Time Step

Profile(s) Duration(s) (mins) Return Period(s) (years) Climate Change (%)

Summer and Winter 15, 30, 60, 120, 240, 360, 480, 960, 1440 1, 30, 100 0, 0, 30

PN	S	torm	Return Period	Climate Change	Rank	First Surchar		First Y Flood	First Overflo	
1.000 2.000 2.001	15	Winter Summer Summer	30 30 30	08 08 08	1	100/30 Su 100/30 Su 100/30 Su	ummer			
1.001		Winter	30	0%	1	1/30 Su			100/30 Su	mmer 15
Lvl Ex.	PN	Water I (m)		rcharged epth (m)	Flooded Vol (m³			Overflow (1/s)	Pipe Flow (l/s)	Status

PFA Consulting		Page 8
Stratton Park House	P482 - Chickerell	
Wanborough Road	Area ii Surface Water	
Swindon SN3 4HG	Drainage	
Date March 2010	Designed By ATBD	DETENSION
File SOUTH TO DITCH.SUM	Checked By	
Elstree Computing Ltd	Simulation W.11.4	

Summary Wizard of "CRITICAL BY RETURN PERIOD"(Rank 1 by Max Level) Results for Design Storms

Margin for Flood Risk warning (mm)750DTS StatusOFFDVD StatusONInertia StatusONAnalysis Time Step2.5 second increment (extended)

Profile(s)
Duration(s) (mins)
Return Period(s) (years)
Climate Change (%)

Summer and Winter 15, 30, 60, 120, 240, 360, 480, 960, 1440 1, 30, 100 0, 0, 30

PN	s	torm	Return Period	Climate Change	Rank	Firs Surch	st X harge	First Y Flood	Firs Over:		0/F Act
1.000	120	Winter	100	30%	1	100/30	Summer				
2.000	120	Winter	100	30%	1	100/30	Summer				
2.001	120	Winter	100	30%	1	100/30	Summer				
1.001	120	Winter	100	30%	1	1/30	Summer		100/30	Summer	15
Lvl Ex.	PN	Water I (m)		charged pth (m)	Floode Vol (m		low/ acity	Overflow (l/s)	Pipe Flo (l/s)	ow Sta	itus

	()	20 <u>F</u> 011 (11)	,	04240207	(=/=/	(=/=/	
1.000	22.791	0.791	0.000	0.05	0.0	123.9	FLD RISK
2.000	22.774	0.924	0.000	0.93	0.0	91.0	FLD RISK
2.001	22.768	0.943	0.000	0.19	0.0	18.2	FLD RISK
1.001	22.788	1.613	0.000	0.05	91.9	20.8	FLD RISK

PFA Consulting		Page 1
Stratton Park House	P482 - Chickerell	
Wanborough Road	Area iii Surface Water	
Swindon SN3 4HG	Drainage	
Date March 2010	Designed By ATBD	
File SOUTH TO SEWER.SUM	Checked By	L'L'C''''ECC
Elstree Computing Ltd	Simulation W.11.4	
	SIMULACION W.II.4	
	Clobal Marriables	
	Global Variables	
Region	FSR - England	& Wales
Return Perio		30
M5-60 (mm)		19.000
Ratio R		0.450
Volumetric R		0.750
Profile Type		Summer
PIMP (%) Areal Reduct	ion Factor	100 1.000
Storm Durati		15
Hot Start (m		0
Hot Start Le	vel (mm)	0
	loss Coefficient	0.500
	* 10m ³ /ha Storage	2.000
	Hectare (1/s)	0.00
Additional F Inlet Coeffi	low - % of Total Flow cient	0.800
	put Hydrographs	0.800
	me/Area Diagrams	0
Number of Bi	furcations	0
Number of Ov		0
	f-Line Controls	1
Number of On	-Line Controls	3
Starting Storm file name		
-		
F:\Workfile\P482\Windes\Indicat	tive Surface 01_10\SOUTH TO SEWER.SWS	
Pipe Numk	. Outfall C.Level I.Level D,L ber MH/No (m) (m) (mm) 005 6 10.085 8.435 1200	(mm) 0
	©1982-2009 Micro Drainage	

PFA Consulting		Page 2
Stratton Park House	P482 - Chickerell	
Wanborough Road	Area iii Surface Water	
Swindon SN3 4HG	Drainage	
Date March 2010	Designed By ATBD	DENTERE
File SOUTH TO SEWER.SUM	Checked By	
Elstree Computing Ltd	Simulation W.11.4	

On-Line Controls (Head/Flow)

US/PN	Volume (m³)	Ctrl MH Name	Invert (m)	Headloss (m)	Flow (1/s)
1.004	171.384	6	9.400	0.2 0.4 0.6 0.8 1.0 1.4 1.8 2.2 2.6 3.0 3.4	$11.3000 \\ 11.3000 \\ 11.3000 \\ 11.3000 \\ 11.3000 \\ 30.0000 \\ 30.0000 \\ 59.0$
2.001	0.115	6	9.400	0.2 0.4 0.6 0.8 1.0 1.4 1.8 2.2 2.6 3.0 3.4	$11.3000 \\ 11.3000 \\ 11.3000 \\ 11.3000 \\ 11.3000 \\ 30.0000 \\ 30.0000 \\ 59.0$

On-Line Controls (Non Return Valve)

US/PN	Volume	Ctrl
05/PN	(m ³)	MH Name

2.000 0.127

PFA Consulting		Page 3
Stratton Park House	P482 - Chickerell	
Wanborough Road	Area iii Surface Water	
Swindon SN3 4HG	Drainage	
Date March 2010	Designed By ATBD	
File SOUTH TO SEWER.SUM	Checked By	
Elstree Computing Ltd	Simulation W.11.4	

Off-line Weir Controls

DS	/PN	Loop PN	MH Loss	Height above DS PN (m)	Width (m)	Discharge Coefficient
1.	005	2.000	0.050	1.400	1.800	0.544

PFA Consulting		Page 4
Stratton Park House	P482 - Chickerell	
Wanborough Road	Area iii Surface Water	
Swindon SN3 4HG	Drainage	
Date March 2010	Designed By ATBD	Dentración
File SOUTH TO SEWER.SUM	Checked By	
Elstree Computing Ltd	Simulation W.11.4	

Storage Pond at pipe 2.001 USMH

Storage Pond Invert Level (m) 9.425

Depth (m)	Area (m²)	Depth (m)	Area (m²)	Depth (m)	Area (m²)	-	Area (m²)		Area (m²)	Depth (m)	Area (m²)
0.0 0.1 0.2 0.3 0.4	460.0 460.0 460.0 460.0 460.0	0.5 0.6 0.7 0.8 0.9	460.0 460.0 460.0 460.0 0.0	1.1 1.2 1.3	0.0 0.0 0.0 0.0 0.0	1.6 1.7 1.8	0.0 0.0 0.0	2.1 2.2 2.3	0.0 0.0 0.0 0.0 0.0	2.5	0.0

PFA Consulting		Page 5
Stratton Park House	P482 - Chickerell	
Wanborough Road	Area iii Surface Water	
Swindon SN3 4HG	Drainage	
Date March 2010	Designed By ATBD	Dentraga
File SOUTH TO SEWER.SUM	Checked By	
Elstree Computing Ltd	Simulation W.11.4	•

Network Details

* - Indicates pipe has been modified outside of WinDes's Storm/Foul & Schedules

	PN	Length (m)	Fall (m)	Slope (1:x)	Area (ha)	T.E. (mins)	Rain Pro	k (mm)	Hyd Sect	Dia (mm)
*	1.000	99.00	4.391	22.5	0.400	5.00	1	0.600	0	300
*	1.001	77.96	3.378	23.1	0.400	0.00	1	0.600	0	375
*	1.002	97.63	3.895	25.1	0.450	0.00	1	0.600	0	450
*	1.003	49.28	1.160	42.5	0.405	0.00	1	0.600	[]	16
*	1.004	55.95	0.191	292.9	0.240	0.00	1	0.600	[]	16
	2.000	2.00	0.025	80.0	0.000	5.00	1	0.600	0	450
	2.001	2.00	0.025	80.0	0.000	0.00	1	0.600	0	450
	1.005	5.00	0.965	5.2	0.000	0.00	1	0.600	0	450
				- -	US			DS	6 5-55	

	PN	USMH No.	US/CL (m)	US/IL (m)	C.Depth (m)	DS/CL (m)	DS/IL (m)	C.Depth (m)	Ctrl No.	US/MH (mm)	
*	1.000	1	23.916	22.491	1.125	19.524	18.099	1.125		1050	
*	1.001	2	19.524	18.099	1.050	16.146	14.721	1.050		1050	
*	1.002	3	16.146	14.646	1.050	13.076	10.751	1.875		1050	
*	1.003	4	13.076	10.751	1.125	11.991	9.591	1.200		1350	
*	1.004	5	11.991	9.591	1.200	11.800	9.400	1.200		1350	
	2.000		11.850	9.450	1.950	11.825	9.425	1.950		1200	
	2.001		11.825	9.425	1.950	11.800	9.400	1.950	3	1200	
	1.005	б	11.800	9.400	1.950	10.085	8.435	1.200	2	1350	

FA Consul			5400		noll		Page 6		
Stratton P		ouse		- Chicker					
lanborough				iii Surfa	ace Wate	er	<mark>ا ن ۲</mark> ۱۵	(\circ)	
Swindon S		i	Drain					9	
Date March				ned By A	I'BD		, D) 25	1 1 1 1 5 7 0	(:
Tile SOUTH				ed By					\sim
lstree Co	mputin	ıg Ltd	Simul	ation W.1	11.4				
Sum	mary W	izard of "	CRITICAL Results	BY RETUR s for Des	N PERIOI sign Sto	O"(Rank 1 rms	by Max (Outflow)	
	D	argin for Flo IS Status VD Status	ood Risk war	ning (mm)	750 ON Ana ON	Inertia St lysis Time	catus ON Step Fine		
Profile(s Duration(Return Pe Climate C	s) (mins riod(s)	(years)		15 1,	mmer and , 30, 60, 30, 100 0, 30		360, 480, 9	960, 1440	
PN	Stor	m Return Period	R:	ank	rst X charge	First Y Flood		st Z O/F rflow Act	
1.000	15 Wir	nter 1	0%	1 100/1	5 Winter				
1.001	15 Wir	nter 1	0%	1 100/1	5 Summer				
1.002	15 Wir		0%		5 Summer				
1.003	15 Wir		0%	1	0 0				
1.004 2.000	15 Wir 15 Sur		0% 0%		0 Summer 0 Summer	100/120 Wi	nter		
2.000	15 Sur 15 Sur		0%			100/120 Wi 100/240 Wi			
	120 Sur		0%				nter 30/30	Summer 31	
Lvl Ex.	PN	Water Lvl. (m)	Surcharged Depth (m)	Flooded Vol (m³)	Flow/ Capacity		Pipe Flow (l/s)	Status	
	1.000	22.591	-0.200	0.000	0.24	0.0	53.8	ОК	
	1.001	18.227	-0.247	0.000	0.25	0.0	100.3	O K	
	1.002	14.798	-0.298	0.000	0.25		152.0	O K	
	1.003 1.004	10.781 10.160	-1.170 -0.631	0.000	0.02		198.0 190.6	ОК ОК	
	2.004	9.450	-0.450	0.000 0.000	0.03		190.8	0 K	
	2.000	9.425	-0.450	0.000	0.00		0.0	ОК	
	1.005	10.273	0.423	0.000	0.02	0.0	11.3	SURCH ' ED	

PFA Consulting Stratton Park House Wanborough Road Swindon SN3 4HG Date March 2010 File SOUTH TO SEWER.SUM Elstree Computing Ltd			Area Draina Design Checke	P482 - Chickerell Area iii Surface Water Drainage Designed By ATBD Checked By Simulation W.11.4					Page 7			
<u>Sum</u>	Mar		CRITICAL Results	s fo	or Des	ign Sto 750		tatus	ON	Dutflow)		
Profile(s Duration(Return Pe Climate C) s) (mins) riod(s) (years)			15, 1,	ON mmer and 1 30, 60, 30, 100 0, 30	Winter 120, 240,	360,	480, 9	960, 1440		
PN	Storm	Return Period	Climate Change Ra	ank		st X narge	First Flood				/F ct	
1.000 1.001 1.002 1.003 1.004 2.000 2.001 1.005	15 Wint 15 Wint 15 Wint 15 Wint 15 Summ 60 Wint 360 Wint 120 Wint	er 30 .er 30 .er 30 .er 30 .er 30 .er 30 .er 30	0% 0% 0% 0% 0% 0% 0%	1 1 1 1 1 1 1	100/15 100/15 30/30 30/60 100/30	Summer	100/120 W 100/240 W 100/240 W	inter	30/30	Summer	31	
Lvl Ex.	PN V	Nater Lvl. (m)	Surcharged Depth (m)			Flow/ Capacity	Overflow (l/s)	-	e Flow L/s)	Status		
	1.000 1.001 1.002 1.003 1.004 2.000 2.001 1.005	22.658 18.331 14.927 10.929 10.791 10.176 9.636 10.930	-0.133 -0.143 -0.169 -1.022 0.000 0.276 -0.239 1.080		0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	0.58 0.68 0.68 0.05 0.08 1.37 0.07 0.05	0.0 0.0 0.0 0.0 0.0 0.0		132.0 268.8 418.8 559.5 451.3 195.9 9.3 30.0	O K O K SURCH'ED O K		

PFA Consul Stratton P			D482	- Chicker	~e]]		Page 8		
Vanborough				iii Surfa		r			,
Swindon S			Draina		ace wale.	T		5 <u>10</u> - (015	\bigcirc
Date March				ned By Al	חאי		1 Doc	Pho-	7-
File SOUTH		SUM	Checke				PLC.		L
lstree Co				ation W.1	1.4				
	<u>-</u> ~ ~ ~ ~	~~	Simula						
Sum	mary Wiza	rd of "		BY RETUR s for Des			1 by Max (Outflow)	
	Margin DTS St		od Risk war	ning (mm)	750 ON Anal	Inertia S			
	DIS SI DVD SI				ON ANAL ON	LYSIS IIM	e Step Fine		
	515 5	ououo			011				
Profile(s)			S11	mmer and V	Vinter			
Duration(,						, 360, 480, 9	960, 1440	
Return Pe	riod(s) (yea	ars)			30, 100				
Climate C	hange (%)			Ο,	0, 30				
		Return	Climate _	. Fir	st X	First	Y Fir	st Z O/F	
PN	Storm	Period	Change Ra	ank	harge	Flood		rflow Act	
			-		_				
1.000			30%	1 100/15					
1.001 1.002	15 Winter 15 Winter		30% 30%		5 Summer 5 Summer				
1.002	15 Winter		30%	1 100/15					
1.004	30 Winter	100	30%) Summer				
2.000	15 Winter		30%			100/120 W			
	120 Winter		30%			100/240 W		Gummore 21	
1.005	120 Winter	TOO	30%	1 1/19	5 Summer	100/240 W	inter 30/30	Summer 31	
Lvl	Wat	er Lvl.	Surcharged	Flooded	Flow/	Overflow	v Pipe Flow	.	
Ex.	PN Wat	(m)	Depth (m)				(1/s)	Status	
	1 000	00 055	0.000	0 000	0.04	0	014.4		
	1.000 1.001	22.857 19.062	0.066 <mark>0.588</mark>	0.000 0.000	0.94				
	1.002	15.435	0.339	0.000	1.04				
	1.003	11.557	-0.394	0.000	0.07			ОК	
	1.004	11.442	0.651	0.000	0.12			FLD RISK	
	2.000 2.001	11.213 11.817	$1.313 \\ 1.942$	0.000	4.01 0.35	0.0 0.0			
	1.005	11.761	1.911	0.000	0.11	295.2			